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Abstract. Electron transport in a superlattice miniband with dissipative and random
environments is considered on the basis of a general theory of open quantum systems. We obtain
the analytical dependence of the electron drift velocity on applied electric field, which contains
a region with negative differential conductivity. The results are compared with experimental
data and the predictions of other theories.

1. Introduction

Electron transport in semiconductor superlattices has attracted considerable attention over
many years because these structures are rich in interesting effects [1–12]. The main ones
are the many types of electron localization in one-dimensional models [11–13] and the
possibility of negative differential conductivity (NDC) in strong electric fields [1, 2]. The
existence of NDC was confirmed both by numerical calculations by means of Monte Carlo
techniques [3–5] and by experiments [6]. But there is no universally accepted theoretical
explanation for this phenomenon. According to Esaki and Tsu [1], NDC is caused by the
electron motion within the miniband including a region of momentum where the electron
effective mass is negative. The measurements of the peak of the drift velocity and the
critical electric field carried out in [6] are in partial agreement with the work described in
[1] as well as with the more sophisticated theory proposed in reference [8] and based on
the balance equations. However, both theories predict the unlimited increasing of the drift
velocity peak with increasing of the superlattice miniband width, whereas the experiment [6]
indicates a saturation of this dependence when the miniband width is more than 100 meV.

Another mechanism producing NDC is connected with transfers between Wannier–Stark
levels in the inclined miniband [2]. This theory predicts a linear dependence of the critical
electric field and a superlinear dependence of the drift velocity peak on the miniband width.
At large miniband width these predictions fail to agree with the experimental data [6].

The aim of present paper is the construction of a microscopical theory of electron
transport in superlattices in the presence of a constant electric field, taking into consideration
optical phonon scattering and impurity scattering. Usually, theoretical investigations have
been carried out either in the framework of the semiclassical Boltzmann equations in theτ -
approximation [7] or by means of the numerical solution of the balance equations [8–10]. In
these investigations it was supposed that the electron distribution function is Maxwellian or
Fermi with the electron temperatureTe. Thereby, the electron temperature was considered
as a parameter which did not correlate with the level of electron velocity fluctuations.
However, the variances of the electron velocity fluctuations along the field direction and
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transversely can be totally different [14, 15]. This is of particular importance for the study
of superlattices which are strongly anisotropic structures.

In the present work we try to circumvent the necessity for making any assumptions
about the electron distribution function along the field direction (and along the superlattice
axis), and derive the equations for generating functions of momentum fluctuations. In
reference [12] this approach made it possible to consider the electron transport in purely
one-dimensional superlattices and to find a new type of dynamical localization in such
structures. In the present work we take into account the transverse degrees of freedom as
well. On the basis of the theory of open quantum systems proposed in references [15–17],
we obtain an analytical expression for the dependence of the drift velocity on the applied
electric field. In addition, we analyse the dependences of the drift velocity peak and the
critical electric field on the miniband width, and compare our results with experimental data
and the predictions of other theories.

2. Theory

The Hamiltonian of the system under study in the tight-binding approximation is

H = 1

2

[
1− cos

(
pz(t)d

h̄

)]
+ p2

⊥
2m
− eEz(t)+Hep +Hei +Hp (1)

where r(t) and p(t) are the electron position and momentum operators, respectively,
p⊥ = (px, py), d is the period of the superlattice,1 is the miniband width, andE is
the electric field strength. Also

Hei = L−3/2
∑
k

Uke
ik·r(t)

and

Hep = L−3/2
∑
k

Qk(t)e
ik·r(t)

describe the electron–impurity interaction and the electron–phonon interaction, respectively.
HereL is the linear spatial size of the system,Uk is the Fourier transform of the impurity
potential, andQk(t) is a variable relating to the phonon heat bath with the unperturbed
HamiltonianHp.

For the case of polar optical phonons, which provide the main mechanism of scattering
in polar semiconductors at sufficiently high temperature, the Hamiltonian of the electron–
phonon interaction has the form

Hep = e
(

2πh̄�0

L3κ∗

)1/2∑
k

i

k
(bk(t)e

ik·r(t) − b+−ke−ik·r(t)). (2)

Here 1/κ∗ = 1/κ∞−1/κ0, whereκ∞ andκ0 are the hf and static permittivities of the crystal,
respectively,�0 is the optical phonon frequency, andb+k (t) andbk(t) are the phonon creation
and annihilation operators, respectively.

It should be noticed that, in view of the relation|eEd| � 1g, where1g is a forbidden
miniband width, we do not take into account the transfers between minibands. Also, we
consider the non-degenerate limit in which the Pauli principle can be ignored.

To describe the electron motion along the superlattice axis direction (thez-axis) without
making any assumptions about the electron distribution function, we consider the generating
function of the momentum’sz-projection fluctuations:

Fn(t) = 〈exp{inpz(t)/h̄}〉
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wheren = 1, 2, . . .. A steady value of(F1)0 will define the electron drift velocity along
the z-axis:

Vd = 〈ż(t)〉 = 1d

2h̄

(〈
sin

(
pz(t)d

h̄

)〉)
0

= 1d

2h̄
Im(F1)0. (3)

Angle brackets mean simultaneously thermally averaging and quantum mechanically
averaging, as well as averaging over impurity configurations.

We can write Heisenberg’s equation for the generating functionFn(t) as follows:

Ḟn(t)+ L−3/2
∑
k

2

h̄
sin

(
kzd

2
n

)〈
(Qk(t)+ Uk) exp

{
ik · r(t)+ i

nd

h̄
pz(t)

}〉
= in�BFn(t)

(4)

where�B = eEd/h̄ is the frequency of the Bloch oscillations.
According to the general theory of open quantum systems [15–17], this equation can be

rewritten as

Ḟn(t)+
∫

d3k

(2π)3
sin

(
kzd

2
n

)∫ t

−∞
dt1

(
(Mk(t, t1)+8k)

×
〈

i

h̄
[exp{ik · r(t)+ indpz(t)/h̄}, exp{−ik · r(t1)}]−

〉
+ ϕk(t, t1)

〈
1

2
[exp{ik · r(t)+ indpz(t)/h̄}, exp{−ik · r(t1)}]+

〉)
= in�BFn(t) (5)

whereϕk(τ ) andMk(τ) are the linear response function and the correlation function of
the unperturbed phonon variables, respectively, and8k is the correlation function of the
impurity potentials. For the case of scattering on polar optical phonons and on charged
impurities, these functions have the forms [15, 18]

ϕk(τ ) = 4π�0e
2

k2κ∗
sin(�0τ)θ(τ )

Mk(τ) = 2πh̄�0e
2

k2κ∗
cos(�0τ) coth

(
h̄�0

2T

)
8k = 2e4n∗t

πκ2
0(k

2+ r−2
0 )2

(6)

whereθ(τ ) is the Heaviside step function,r0 is the screening radius,n∗t =
∑

α nαZ
2
α, nα is

the concentration of impurities of branchα, andZα is its charge.
In the case of weak electron–phonon coupling and weak electron–impurity scattering we

can neglect the interaction effects on the period of the memory time of equation (5). This is
a good approximation for polar semiconductors [15]. Then, to calculate the commutators,
we will consider the time evolution of the position operators to be the following:

r⊥(t) = r⊥(t1)+ Ṽ⊥(t1)(t − t1) (7)

z(t) = z(t1)+ 1d

h̄�B
sin

(
�B(t − t1)

2

)
sin

(
pz(t1)d

h̄
− �B(t − t1)

2

)
(8)

where Ṽ⊥ is a random velocity in the transverse degrees of freedom. Using the operator
expression

eÂeB̂ = exp

{
Â+

∫ 1

0
dξ eξÂB̂e−ξÂ

}
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and equations (7), (8), we obtain〈
i

h̄
[exp{ik · r(t)+ indpz(t)/h̄}, exp{−ik · r(t1)}]−

〉
= 2

h̄

m=∞∑
m=−∞

exp

{
−i
m�B

2
τ

} 〈
exp

{
i
(m+ n)d

h̄
pz(t)

} 〉
× Jm

{
21

h̄�B
sin

(
�Bτ

2

)
sin

(
kzd

2

)}
〈exp{ik⊥ · Ṽ⊥τ }〉

×
[

sin

(
kzd

2
(m+ n)

)
cos

(
h̄k2
⊥

2m
τ

)
+ cos

(
kzd

2
(m+ n)

)
sin

(
h̄k2
⊥

2m
τ

)]
(9)〈

1

2

[
exp{ik · r(t)+ indpz(t)/h̄}, exp{−ik · r(t1)}

]
+

〉
=

m=∞∑
m=−∞

exp

{
−i
m�B

2
τ

} 〈
exp

{
i
(m+ n)d

h̄
pz(t)

} 〉
× Jm

{
21

h̄�B
sin

(
�Bτ

2

)
sin

(
kzd

2

)}
〈exp{ik⊥ · Ṽ⊥τ }〉

×
[

cos

(
kzd

2
(m+ n)

)
cos

(
h̄k2
⊥

2m
τ

)
− sin

(
kzd

2
(m+ n)

)
sin

(
h̄k2
⊥

2m
τ

)]
.

(10)

Hereτ = t − t1 andJm(x) are Bessel functions.
Substituting these relations into equation (5), we are led to a system of equations for

the generating functionsFn(t) (n = 1, 2, . . .):

Ḟn(t)+
m=∞∑
m=−∞

G(n,m)Fm+n(t) = in�BFn(t) (11)

where the ‘collision term’G(n,m) is defined by the expression

G(n,m) =
∫

d3k

(2π)3
2

h̄
sin

(
kzd

2
n

)∫ ∞
0

dτ

{
2

h̄
(Mk(τ)+8k)

×
[

sin

(
kzd

2
(m+ n)

)
cos

(
h̄k2
⊥

2m
τ

)
+ cos

(
kzd

2
(m+ n)

)
sin

(
h̄k2
⊥

2m
τ

)]
+ ϕk(t, t1)

[
cos

(
kzd

2
(m+ n)

)
cos

(
h̄k2
⊥

2m
τ

)
− sin

(
kzd

2
(m+ n)

)
sin

(
h̄k2
⊥

2m
τ

)]}
× Jm

[
21

h̄�B
sin

(
kzd

2

)
sin

(
�Bτ

2

)]
exp

(
−i
m�B

2
τ

)
〈exp{ik⊥ · Ṽ⊥τ }〉. (12)

The generating function of the velocity fluctuations in the transverse degrees of freedom
〈exp{ik⊥ · Ṽ⊥τ }〉 requires detailed analysis. In the present work we first assume these fluct-
uations to be Gaussian, so

〈exp{ik⊥ · Ṽ⊥τ }〉 = exp

{
−k

2
⊥
2
〈Ṽ 2
⊥〉τ 2

}
(13)
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where 〈Ṽ 2
⊥〉 = 〈Ṽ 2

x 〉 = 〈Ṽ 2
y 〉, and, second, we neglect the transverse heating, i.e. assume

that 〈Ṽ 2
⊥〉 = T/m. These assumptions simplify the calculations significantly, but give

qualitatively correct results.
For the case of weak electron–phonon and electron–impurity interactions, for which the

condition |G(n,m)/�B | � 1 is fulfilled, we obtain

Ḟn(t)+ γnFn(t)+G(n,−n) = in�BFn(t) (14)

whereγn = G(n, 0) plays the role of a damping rate, whileG(n,−n) defines the steady
state of the generating functionFn(t):

(Fn)0 = G(n,−n)
in�B

. (15)

The electron drift velocity (3) is proportional to the imaginary part of the function(F1)0:

Vd = 1d

2h̄

〈
sin

(
pzd

h̄

)〉
0

= 1d

2h̄
Im(F1)0 = − 1d

2h̄�B
ReG(1,−1). (16)

The ‘collision term’G(1,−1) can be found after substitution ofn = 1 andm = −1, the
expressions for the correlation functions and the response function (6), and the generating
function of transverse velocity fluctuations (13) into equation (12), and integrating with
respect toτ .

As a result, we obtain the expression for the dependence of the electron drift velocity
on the applied electric field:

Vd = V0
1√
2

∑
l

l

∫ kD

0
dkz

∫ kD

0
dk⊥

1

k2
J 2
l

{
1

h̄�B
sin

(
kzd

2

)}
×
(
(N0+ 1)

(
exp

{
−1

2

m(ωk +�0− l�B)2
k2
⊥T

}
− exp

{
−1

2

m(ωk +�0+ l�B)2
k2
⊥T

})
+ N0

(
exp

{
−1

2

m(ωk −�0− l�B)2
k2
⊥T

}
− exp

{
−1

2

m(ωk −�0+ l�B)2
k2
⊥T

})
+ αk2r2

0

(k2r2
0 + 1)2

(
exp

{
−1

2

m(ωk − l�B)2
k2
⊥T

}
− exp

{
−1

2

m(ωk + l�B)2
k2
⊥T

}))
.

(17)

Herek2 = k2
z + k2

⊥, N0 = [exp(h̄�0)− 1]−1, and

V0 = me2�0d
2

2
√
πh̄2κ∗

.

Also, 2 = 2md2T/h̄2 is the normalized temperature,ωk = h̄k2
⊥/2m, and

α = e2n∗t κ
∗r2

0

π2κ2
0h̄�0

is a parameter describing the relationship between the constants of the electron–phonon and
electron–impurity interactions.
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3. Discussion

The formula obtained, equation (17), admits a clear interpretation. In the limit of low
temperature (or if we neglect velocity fluctuations in the transverse degrees of freedom),
the factor √

m

h̄
√

2πT
exp

{
−1

2

m(ωk ±�0± l�B)2
k2
⊥T

}
→ k⊥δ(h̄ωk ± h̄�0± h̄l�B)

represents the energy conservation law for the scattering.
Thus, we can interpret the electron transport as the transition of an electron from one

level of a Wannier–Stark ladder to another. The electron absorbs (emits) a phonon or
scatters on an impurity and goes to another energy level. The difference between the phonon
energy and the distance between the levels (or the complete energy distance in the case of
impurity scattering) transfers to transverse degrees of freedom (or is covered by transverse
degrees of freedom). The drift motion is determined as the difference between electron
motions downwards (along the electric field) and upwards (against the field). Therewith,
the Bessel functions modify the matrix elements of the electron–phonon and electron–
impurity interactions in the presence of a superlattice potential. Thermal fluctuations in the
transverse degrees of freedom transform theδ-functions to exponents.

Figure 1. The dependence of the drift velocity on the applied constant electric field for different
miniband widths at the temperatureT = 300 K.

In figure 1 the dependences of the electron drift velocity on the applied electric field for
different miniband widths1 at the lattice temperatureT = 300 K are presented. As may be
seen, at weak field this dependence is similar for different miniband widths. This is because
in this case the electron scatters on a phonon and goes to another Wannier–Stark level well
before the Bragg reflection occurs. This leads to ohmic current–voltage characteristics at
weak field as well. At stronger fields Bragg reflections take place, and this gives rise to a
region with negative differential conductivity. It is clear that the critical field increases with
increase of the miniband width. At the significant miniband width1, the curves of the fall
region became smoother. This is explained by the modification of the matrix elements of
the electron–phonon and electron–impurity interactions in the presence of the superlattice
potential. One can even see weak oscillations due to the Bessel functions in the modified
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matrix elements.
The drift velocity is normalized toV0, which is equal to 8× 105 cm s−1 for a super-

lattice produced from GaAs/AlAs with the periodd = 5.7 × 10−7 cm. The electric
field is normalized toE0 = h̄2/2emd3, which is equal to 30 kV cm−1 under the same
conditions. The values of the miniband width are expressed in units of10 = h̄2/2md2 =
1.76× 10−2 eV.

For these samples, the constantα determining the relationship between the constants of
the electron–impurity interaction and the electron–phonon one is equal to 6×10−24n∗t , where
n∗t is measured in cm−3, i.e. is very small at usual concentrations of impurities. Therefore,
impurity scattering contributes to electron transport at extremely low temperature and for
weak fields only.

Figure 2. The dependence of the drift velocity on the applied constant electric field for different
temperatures at the miniband width1 = 610.

In figure 2, the dependence of the drift velocity on the applied field is shown for
different temperatures at the miniband width1 = 610. As one can see, the curves for
different temperatures are similar, which is in agreement with experimental data [6].

To compare the results of the present work with experimental data as well as with the
predictions of other theories, we demonstrate the dependences of the valuesVp/d andEcd
on the miniband width in figure 3 and figure 4, respectively. HereEc is the field at which
the region with negative differential conductivity has its onset andVp is the drift velocity
at this field.

One can see from figure 3 that our results are qualitatively in agreement with
experimental data. All other theories predicted unlimited increasing of the ratioVp/d

as the miniband width increases. The deviation from this behaviour was explained by
the possibility of electron transfer to another miniband. However, we have shown that
this phenomenon can be explained by significant modification of matrix elements of the
electron–environment interaction at large1 in the framework of a single-miniband model.
The quantitative agreement can be improved by taking into account carrier heating in the
transverse degrees of freedom by means of a procedure proposed in [15].

The dependence of the critical field on the miniband width is presented in figure 4.
The experimental data for the large miniband width provided a reason for not accepting
the model proposed in reference [2], wherein the negative differential conductivity was
caused by transfers between Wannier–Stark levels in the inclined miniband. Our model is
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Figure 3. The dependence of the ratio of the velocity drift peak to the superlattice period on
the miniband width at the temperatureT = 300 K.

Figure 4. The dependence of the product of the critical electric field and superlattice period on
the miniband width at the temperatureT = 300 K.

analogous to that of Tsu and Dohler, but our points at large1 are in excellent agreement
with experiments. The deviation at small1 is significant, but, as is evident from the
foregoing, increasing of the critical field with increasing of the miniband width would
appear reasonable. Moreover, it should be mentioned that the experimental measurement
of the field value presents considerable difficulties, due to the lead effects. It cannot be
too highly stressed that for the experimental points at small1 there is a wide scatter of
data. In addition, the larger value of the critical field obtained from the experiment could
be associated with insufficient interface quality of the experimental samples. Anyway, the
measurements of the current value are more plausible, but in this case (figure 3) our data
are near to the experimental ones.
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4. Conclusions

We now give a brief summary of the main results of this work.
We have considered quantum transport in the semiconductor superlattice in the

framework of the single-miniband model. On the basis of the general theory of open
quantum systems, the non-Markovian equations for the generating function of momentum
fluctuations are derived for the case of the presence of a constant electric field as well as
dissipative and random environments. This has made it possible to obtain the analytical
dependence of the electron drift velocity on the applied electric field. This dependence
demonstrates the most significant feature of the electron transport in superlattices, namely,
the region with negative differential conductivity. Our results have been compared with the
predictions of other theories and the experimental data. The values of the drift velocity at
the point of transition to the regime of negative differential conductivity show qualitative
agreement with well-known experimental results [6] and, moreover, explain the experimental
data at large miniband widths. The critical electric field increases linearly with the miniband
width because the negative differential conductivity is caused by the Bragg reflection in
the inclined miniband. At the large width1, our results are in good agreement with
experimental data.

It should be noticed that the quantitative agreement can be improved by means of a
self-consistent treatment of kinetic and fluctuation processes in superlattices on the basis of
the approach proposed in reference [15]. In addition, the equations obtained in the present
paper can be generalized to include the presence of magnetic or time-dependent electric
fields.
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